If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+(-14x)+1=0
We get rid of parentheses
2x^2-14x+1=0
a = 2; b = -14; c = +1;
Δ = b2-4ac
Δ = -142-4·2·1
Δ = 188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{188}=\sqrt{4*47}=\sqrt{4}*\sqrt{47}=2\sqrt{47}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{47}}{2*2}=\frac{14-2\sqrt{47}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{47}}{2*2}=\frac{14+2\sqrt{47}}{4} $
| 10x+x²=128 | | (2x^2+(-14x)+1=0 | | 15x3=20x2 | | 19=3x-17 | | 2(2x+9=18 | | 2(2x+9=-18 | | 7x-3x=26 | | 7v+19=2(10v+3) | | 7v+19=20v+3 | | 1−5 | | x-2.9=7.4 | | 5x-20=2x+50 | | 8+5^x-3=133 | | 25+b11/12=47 | | 1.2x-5.12=1.6+(0.1x) | | 9(x-2)=-2x=7x+5 | | 2x^2+10=172 | | 16/x=800 | | 7(-6x-2)+368=2(-2x-10)-348 | | 5y+8=-3.5y-28 | | 4n–13=7 | | 1/2x+3/4=-3/5x-7/5 | | 12/5=45/a | | 4/5+4c=8. | | 12/5=n/45 | | 24/10=45/n | | 314=12+w,w | | 11−3x=19−x | | 7m+8m-9= | | 7x+8x12+6x=33 | | -9(4x)+292=-(-5x-8)-290 | | -9m=99. |